
J .  Fluid Mech. (1985), vol. 161, p p .  2 7 4 2  

Printed in Great Britain 

27 

Doubly periodic progressive permanent waves 
in deep water 

By P. J. BRYANT 
Mathematics Department, University of Canterbury, Christchurch, New Zealand 

(Received 12 July 1984 and in revised form 2 May 1985) 

The Stokes wave is generalized to progressive waves in deep water which are periodic 
in two orthogonal directions, and are steady relative to a frame of reference moving 
in one of these directions. These doubly periodic waves are nonlinear at their lowest 
approximation, and are calculated from the nonlinear equations for irrotational 
motion in deep water. It is shown how doubly periodic waves of small but finite wave 
slope may be calculated also from the nonlinear Schrodinger equation. The three- 
dimensional paths of particles on the free surface of a doubly periodic wave are found, 
and the interesting property is demonstrated that the mean particle paths differ from 
the direction of advance of the wave crests. The upper boundary of occurrence of 
doubly periodic waves at  the smaller wavelength ratios is identified with the stability 
boundary for Stokes waves. The investigation aims to provide a closer approximation 
than Stokes waves to local wave structures on the ocean. 

1. Introduction 
The gravity-wave motion on the ocean surface consists of waves, generated at a 

number of sources, which interact and decay as they propagate across the surface. 
The local-ocean-wave spectrum has peaks, therefore, which may be identified with 
wavetrains propagating in different directions. The Stokes wave is a periodic 
wavetrain of symmetric permanent shape propagating in one direction for which the 
water-surface displacement is described by 

This Fourier cosine series, with constant Fourier amplitudes ak, has permanent shape 
in a frame of reference moving with the wave velocity c in the x-direction. The 
present investigation is concerned with generalizing the Stokes wave to progressive 
waves of permanent shape which are periodic in two horizontal directions. 

A doubly periodic progressive permanent wave is described by 

I m a ,  

7 = X C ajk cos - [(x-ct) cosa+y sina]+k[(x-cct) cos/?+y sin/3] , (1.2) 

a double Fourier cosine series with constant Fourier amplitudes a,k, which has 
permanent shape in a frame of reference moving with velocity c in the x-direction. 
This wave is periodic in the two oblique directions defined by x cos a + y sin a = con- 
stant, and z cosg+ y sing = constant. It is composed of two wavetrains of wave- 
length ratio T propagating at angles a and B to the x-direction together with their 
nonlinear interaction. The permanent shape is equivalent to the two wavetrains being 
locked together in the x-direction. 
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The locking of the two wavetrains can occur only if the nonlinear dispersion relation 
for gravity waves is applicable, with dependence on wave amplitude as well as 
wavelength. This property implies that doubly periodic waves are nonlinear at their 
lowest approximation. The investigation of long-crested waves by Roberts & 
Peregrine (1983), using a perturbation expansion that appears to be linear at its lowest 
approximation, is in fact nonlinear there because it contains a wave amplitude in the 
linear solution that is determined by a secularity condition a t  the third order. 

Calculations of doubly periodic permanent waves have been made by Saffman & 
Yuen (1980) as bifurcations of Stokes waves. They obtained two forms of wave 
solution, described as symmetrical and skewed. The symmetrical form is progressive 
in the x-direction and standing in the y-direction. The skewed form corresponds to 
(1.2) with /3 = 0, it is progressive in the 2-direction, and is doubly periodic in the 
y-direction and in a direction ?jn +a with the x-axis (Saffman & Yuen 1980, $4, with 
r ,  a above related to their p ,  q by ( l /r )  cosa = p, ( l /r )  sina = q). The undisturbed 
Stokes wave in their formulation propagates in the x-direction, when it is described 
by the waveband j = 0 in (1.2) with /3 = 0, and the modulation is represented by the 
wave components with k = 0, j > 0 in this equation. Their use of the Zakharov 
equation led to the neglect of interactions between higher harmonics of the undisturbed 
Stokes wave and the modulations, equivalent in (1.2) to ajk = 0 for j > 0, I k I > 1.  
The bifurcation analysis shows that doubly periodic waves do occur in the 
neighbourhood of Stokes waves. The present investigation continues the analysis to 
fully nonlinear doubly periodic waves by avoiding the restrictions involved in 
calculating doubly periodic waves as weakly nonlinear perturbations to Stokes waves. 

Meiron, Saffman & Yuen (1982) and Roberts & Schwartz (1983) made more 
accurate calculations of the symmetrical progressive-standing waves. Their method 
is similar to that described below ($2), except that it is based on collocation rather 
than on Fourier transforms. Their calculations complement the present investigation, 
because progressive-standing waves may occur near the shore, but on the open ocean 
the waves are more likely to be completely progressive. The present Fourier-transform 
method is preferred to collocation because it is efficient numerically and it provides 
immediate complete information about the spectral composition of the wave solutions. 
Ma (1982) used a more general form of the Zakharov equation to calculate bifurcations 
to Stokes waves. His representation is the particular case of (1.2) with B = 0 for which 
a,k = 0, j > 1, equivalent to linearization in the modulation. Martin (1982) found 
symmetrical and skewed wave solutions of the nonlinear Schrodinger equation having 
the same form as those of Saffman & Yuen (1980). 

Roberts (1983) used a perturbation expansion in the wave slope to calculate 
short-crested symmetrical progressive-standing wave solutions of Laplace’s equation 
with the nonlinear free-surface boundary conditions ((2.1) below). This approach 
complements the solutions by collocation referred to above, and was used also by 
Roberts & Peregrine ( 1983) to calculate long-crested progressive-standing wave 
solutions. The latter investigation is discussed in $$4,5 below. 

The doubly periodic waves calculated here are the simple case given by a = in, 
B = 0 in (1.2), namely 

which are periodic in the x- and y-directions. An example of such a wave is sketched 
in perspective in figure 1, showing 4 wavelengths in the x-direction and 2 wavelengths 
in the y-direction, with r = 4. The wave has permanent shape relative to a frame of 
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FIGURE 1. Perspective view of doubly periodic waves with E = 0.5, r = 4, showing 4 wavelengths 
in the x-direction and 2 wavelengths in the y-direction, and a detailed view of the ends of the crests. 
Vertical magnification 2. 

reference moving in the x-direction, and the straight-crested part of the wave 
progresses at 10.5" to the x-direction. It is demonstrated in $6 how the particle paths 
are three-dimensional with a mean direction for the straight-crested parts which is 
inclined at only 0.8' to the x-direction. The structure at the ends of the crests is shown 
in greater detail in the upper part of the figure. The minimum wave height (trough 
to crest) a t  the ends of the crests is 0.53 of the maximum wave height of the straight- 
crested part. 

Attention is drawn to the similarity in appearance between figure 1 and the wave 
patterns generated experimentally by Su (1982, figure 4). His wave patterns are part 
of an evolving wavefield, rather than the steady wave patterns calculated here. 
Nevertheless, the qualitative similarity gives confidence in the physical relevance of 
doubly periodic waves. 

The motivation for the present investigation is that of setting up a particular more- 
realistic local nonlinear model of the open ocean surface than is given by the Stokes 
wave. The model is used to calculate relevant properties, such as the form of the 
Stokes drift on a doubly periodic ocean surface. The method used here may be gener- 
alized to the calculation of further specific nonlinear ocean wave structures (Bryant 
1984), because it makes no explicit approximations for the nonlinear properties of 
the ocean surface. 

2-2 
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2. Calculation of doubly periodic waves 

water is 
The set of equations describing gravity waves in inviscid irrotational motion in deep 

$xz+$yy+4zz = 0, < E r ( X , Y > t ) ,  ( 2 . l a )  

$ x ,  (by, 9 , - 4  z-+- m, ( 2 . l b )  

q t - $ z + E q x $ x + E q y 9 y  = 0, z = q ( x , y , t ) ,  (2.1 c )  

q + $ t + w ; + $ ; + $ ; )  = 0, z = q+,Y' t ) .  ( 2 . 1 4  

The dimensional variables are the water-surface displacement uq, the velocity 
potential (gZ)ta$, and Zx, Zy, 22, (Z/g)t t, where a is the maximum wave height q ( O , O ,  0 ) ,  
2x1 is the wavelength in the x-direction, and E = a/l  is a measure of wave slope. The 
origin of the coordinates lies in the mean free surface with the z-axis vertically 
upwards. 

The non-dimensional description of the simple doubly periodic permanent wave 

( 2 . 2 4  1 (1 .3 )  is J k,W 
7' I: a j k C O S  - y + k ( x - c t )  , 

j -0 k - k i ( f )  Ijr 
which is a wavetrain with wavelengths 2x1 in the x-direction, 2nd in the y-direction, 
whose shape is steady relative to a frame of reference moving with velocity c(gZ)t in 
the x-direction. The bounds of summation are determined numerically by trial and 
error so that the set of amplitudes a j k  includes all those amplitudes greater in 
magnitude than some small prescribed value (usually Since q is chosen to have 
a zero mean, the lower bound k,(O) may be set equal to  1 .  Other lower bounds k l ( j ) ,  
j > 0 may be negative. The associated solution of Laplace's equation ( 2 . 1 ~ )  is 

The set of amplitudes a j k ,  bjk (all j, k )  and the non-dimensional wave velocity c are 
unknown functions :)f the wave slope parameter E and the wavelength ratio r .  

Equations (2 .2 )  describe one particular family of doubly periodic waves, probably 
the simplest family. These equations are numerically complete in the sense that they 
include a complete set of wave components, greater in magnitude than some small 
prescribed value, which are generated by the nonlinear interactions contained in 

The solution method is the same as that applied to  oblique wave groups in deep 
water (Bryant 1984), where more details about the method may be found. Equations 
(2 .2a,  b )  are substituted into (2.1 c ,  d ) ,  with cjk denoting the cosine in ( 2 . 2 ~ )  and s , ~  
the sine in (2 .2b ) ,  giving 

(2.1 c ,  d ) .  
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Also H = x x U j k - 1  = o  ( 2 . 3 ~ )  

because the maximum non-dimensional surface displacement r ] ( O , O ,  0) is taken to 
be 1. Equations (2 .3a ,  b) are calculated a t  a grid of points in x-ct, y / r  space, and 
with fast Fourier transforms are reduced numerically to  

F = E E F,,s,, = 0, G = x Gmncmn = 0, (2 .4a ,  b )  

/ k  

m n  m n  

from which Fmn = Gmn = 0, all m, n. (2 .5 )  

The Fourier coefficients Fmn, Gmn are nonlinear functions of a j k ,  b,! (all j and k) 
and c for given E and r .  Fourier transforms are calculated for the denvatives of F, 
G and H with respect to ajk, bjk (all j and k) and c. Newton's method is then used 
in the Fourier transform space to calculate ajk, bjk (all j and k) and c as solutions of 
(2 .3a ,  b ,  c) on the grid of points used for the Fourier transforms. All calculations were 
performed in double precision on a Prime 750 computer, with subroutines adapted 
from the Hanvell Subroutine Library. 

3. Occurrence of doubly periodic waves 
Doubly periodic waves are calculated as functions of E and r by making step-by-step 

changes in either E or r to find new solutions from old solutions. For any given value 
of the wavelength ratio r ,  doubly periodic waves of the form described by (2 .2 )  exist 
for values of the wave-slope parameter E greater then some positive minimum. As 
E approaches the minimum value from above, the doubly periodic waves tend towards 
a Stokes wave propagating in a direction eo = tan-l ( l / r )  with the x-direction. The 
wavelength 2x1, of the Stokes waves is given by 

and if the trough-to-crest height of the Stokes wave is denoted by 2a0, a more 
appropriate wave-slope parameter for the Stokes wave is 

Eo = ao/lo. (3 .2 )  

As E tends to the minimum value from above, the Jacobian in Newton's method 
increases in magnitude, making i t  possible to calculate the minimum value of e and 
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the Stokes wave solution there with accuracy. In contrast, calculation of the 
maximum value of E for any given r is approximate because the Jacobian in Newton's 
method decreases in magnitude as this limit is approached, and because the series 
representation for the velocity potential may fail to converge. 

Although the minimum value of E is a point of bifurcation between doubly periodic 
waves and Stokes waves, the solution branch with r kept constant may be followed 
through the bifurcation point to the Stokes wave solutions at values of E below the 
minimum for doubly periodic waves. The Jacobian on this solution branch increases 
in magnitude as E decreases, except for a local decrease in magnitude near the point 
of bifurcation itself. This local decrease may be missed unless the stepsize in E between 
consecutive calculations is sufficiently small. If this solution branch is followed 
upwards, beginning with the Stokes wave solutions below the minimum value for 
doubly periodic waves, the Jacobian changes sign a t  the bifurcation point, and the 
solutions continue on a Stokes-wave-solution branch above the bifurcation point. 

For values of E greater than the minimum, a more appropriate waveslope parameter 
may be defined from the wave height and wavelength of the straight-crested parts 
of the doubly periodic wave. The wave height 2a, and wavelength 2x1, are both 
determined from the wave solution once it has been calculated for the given values 
of E and r .  In  the example in figure 1, for which E: = 0.5, r = 4, these parameters are 
a, = 0.3941,1, = 0.9831, making E ,  = 0.40. The minimum value of E for r = 4 is 0.276, 
when the Stokes wave there has a wave-slope parameter E ,  = 0.250. The maximum 
value of E when r = 4 is 0.584 approximately, for which the straight-crested parts 
of the wave have a wave-slope parameter E ,  = 0.437. 

The basic geometric unit of the doubly periodic wave structure described by (2.2) 
is a rectangle of sides 2x2 in the z-direction and 2nd in the y-direction. The angle 
tan-l ( l /r )  in this rectangle equals the direction of propagation 6, of the Stokes 
wave a t  the minimum value of 6 for the given value of r .  The wave-slope parameter 
8, normal to the straight-crested parts of the wave is a more descriptive amplitude 
parameter than the wave-slope parameter E in the x-direction. For these reasons, the 
region of occurrence of the doubly periodic waves is sketched in figure 2 in terms of 
6, and 6,. 

The lower curve in figure 2 has been calculated to within the accuracy of the figure 
for values of 0, up to about 60". Wave resonances become significant at greater angles 
($7), where the doubly periodic wave solutions do not appear to be physically 
relevant. The upper curve in figure 2 is everywhere approximate for the reasons stated 
above. It could not be extended to values of 8, below about 5" because the number 
of wave components required to find solutions there exceeded the computing capacity 
available. The region of occurrence is discussed in three parts, small wave slopes ($5), 
large wave slopes with 6, small ($6), and large wave slopes with 8, large ($7). 

4. Nonlinear Schradinger equation 

using the non-dimensional notation defined in $2, is 
The nonlinear Schrodinger equation for wave motion on the surface of deep water, 

i(A, ++A,) - iAZz + iAYy -+." I A l2 A = 0, (4.la) 

where 7 = Re{A(x, y , t )  expi(x-t)}. (4.1 b) 

The equation is valid for waves of small but finite wave slope B ,  for which the 
amplitude function A(%, y,  t )  is a slowly varying function of x, y and t .  The latter 
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condition is equivalent to the Fourier decomposition of 7 having a single narrow peak 
in two-dimensional wavenumber space near the wave component of wavenumber 1 
in the x-direction. These conditions are satisfied for doubly periodic waves near the 
origin in figure 2, implying that these waves should be modelled by (4.1). The analysis 
below is similar to that derived by Roberts & Peregrine (1983, appendix), but is 
repeated here to demonstrate that the numerical solutions by the method of $2 are 
consistent with the corresponding solutions of the nonlinear Schrodinger equation. 

The amplitude function for the simple doubly periodic waves described by (2.2) 
is a non-zero function dependent on y and t alone, A(y, t). Equation (4.1 a), with the 
substitution 

A ( y , t )  = F(y) exp{i@(y)-id} (4.2) 

(F, @, 01 real), followed by cancellation of the exponential functions, has real and 
imaginary parts 

Fg,-F@;+4aF-2P = 0, F@,,+~F,CD~ = 0. (4.3a, b) 

(4.4) 
Equation (4.3 b) integrates to 

where B is an arbitrary constant. After substitution for GY, (4.3a) becomes 

Pa, = B,  

B2 
F 

which integrates to 
P, = F 4 - 4 ~ P - - + C ,  

(4.5a) 

(4.5b) 

where C is an arbitrary constant. 
Equation (4.5b) with B = 0 has no solutions describing a periodic oscillation of F(y) 

between positive extrema F,, F,. If Fu has zeroes at  F = F,, F,, (4.5b) with B = 0 has 
the form 

Py = ( q - m ( G - m ,  (4.6) 
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which has no real solutions with Fl < F < F,. If B is non-zero, (4.5b) with a suitable 
choice of a, B, and C can have the form 

( F 2 - c )  ( F T - P )  ( F i - F )  
F2 

Pu = , (4.7) 

where 0 < Fo < Fl < F,. Equation (4.7) does have periodic solutions for which 
F, < F < Fl. Hence the nonlinear Schrodinger equation (4.1 a )  can have solutions of 
the form of (4.2) with a positive periodic amplitude F(y) provided that the phase @(y) 
is a monotonically increasing or monotonically decreasing function of y. The water 
surface displacement, (4.1 b ) ,  is then 

?j = F(y) cos{X+@(y)-(1+a)t}, (4.8) 

which is a wavetrain periodic in the x-direction, slowly varying in the y-direction, 
that is steady relative to the frame of reference moving with a non-dimensional 
velocity c = 1 +a in the x-direction. If the wavetrain is periodic in the y-direction 
also, with a non-dimensional wavelength 2nr, then the solution F(y) of (4.5) has 
wavelength 2nr, and from equation (4.4) 

B s,"' F-, dy = 27c (4.9) 

for the simplest doubly periodic wave. 
Equation ( 4 . 5 ~ )  may be solved, subject to the constraint (4.9), by a numerical 

method which is a simplified version of that  described in $2 (see also Bryant 1984, $3). 
Since F(y) is symmetric in y with a wavelength 2nr, i t  may be written as the 

kY (4.10) 
r 

where N is determined by trial and error so that the set of amplitudes ak includes 
all those greater in magnitude than some small prescribed value here). The 
Fourier series is substituted into (4.5a), which is expanded numerically into a Fourier 
cosine series a t  given values of E ,  r ,  and B, and is solved by Newton's method for 
the N + 1 Fourier amplitudes a,, a,, . . . , aN and the parameter a .  The constant B is 
then changed step by step until the constraint (4.9) is satisfied. 

The doubly periodic wave solutions of the nonlinear Schrodinger equation (4.1) 
were found to be in good agreement with the corresponding doubly periodic waves 
calculated from (2.1) a t  values of E: near the origin in figure 2. Some properties of the 
doubly periodic wave for which E = 0.12, r = 10 (c = 1.008, e0 = 0.096, Bo = 5.71') 
are sketched in figure 3. The solid curvee are derived from (2.1) and the dashed curves 
from the nonlinear Schrodinger equation (4.1). The left-hand section shows two 
transverse wavelengths of the upper and lower wave envelopes, which for the 
nonlinear Schrodinger equation are F(y). The right-hand curve is two transverse 
wavelengths of the wave crest, given for the nonlinear Schrodinger equation by 

Fourier cosine series N 

F(y) = $,+ x Uk cos--, 
k-1 

x + @ ( y ) - ( l + a ) t  = 0, l+a  = c (4.11) 

in (4.8). The two solutions coincide within the precision of the figure except for the 
slight separation of the lower envelopes, which gives confidence in the validity of both 
solutions. 

Roberts & Peregrine (1983) calculated long-crested water waves which progress in 
the x-direction, are standing waves in the transverse direction, and are doubly 
periodic in these two directions. They used a perturbation expansion in wave slope 
valid for the parameter range E - Bo 6 1 (in the present notation). Since their 
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FIGURE 3. Comparison of properties of the doubly periodic wave with E = 0.12, r = 10 and those 
of the corresponding solution of the NLS equation. On the left are two transverse wavelengths of 
the upper and lower envelopes (vertical magnification 20), and on the right are two transverse 
wavelengths of the wave crest. The dashed curve, distinguishable only on the lower envelope, is the 
NLS solution. 

leading-order solution has no phase change with respect to the transverse variable, 
their equations (2. lo), (2.1 1) for the wave amplitude are the same (apart from a scaling 
factor) as equations (4.5a, b) above with B = 0. These equations were shown to have 
sn solutions with envelope zeroes. Their fourth-order solutions for doubly periodic 
long-crested waves have envelope zeroes also. However, their analysis of the 
nonlinear Schrodinger equation does admit doubly periodic progressive wave solutions 
without envelope zeroes, suggesting that the perturbation-expansion method could 
be used to calculate doubly periodic progressive wave solutions without envelope 
zeroes, for which the leading-order solution does have a phase change with respect 
to the transverse variable. 

5. Doubly periodic waves of small wave slope 
Two properties of doubly periodic waves of small wave slope are investigated here. 

Reasons are sought for the right boundary of the region of occurrence of these waves 
in figure 2 being asymptotic to a straight line through the origin as 8, tends to zero. 
The form of the doubly periodic waves as the left boundary is approached, when the 
wavelength ratio r becomes large, is also examined. 

The right boundary of the region of occurrence is asymptotic to a straight line 
through the origin of slope 0.877 when 8, is expressed in radians. This boundary is 
the minimum value of the wave-slope parameter E,, for any given wavelength ratio 
r (= cot O,), at which two waves at angle 8, may be locked together to form a doubly 
periodic wave of permanent shape. The doubly periodic wave is a Stokes wave at this 
minimum value, whose dimensional wave velocity, as calculated by Stokes, is 

c, = (sa,):(1++;+O(m7 (5.1) 

in the present notation. The non-dimensional velocity in the x-direction of a Stokes 
wave propagating a t  angle 8, to the x-direction, using (3.1), is therefore 

c = co(gz)-! (cose,)-l 
= (COSeO)-f(i ++;+o(.:)). 

This relation is fitted accurately on the whole lower boundary in figure 2. 
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For values of E ,  slightly greater than the minimum value, the doubly periodic wave 
in the region of small wave slope consists of the Stokes wave at  angle 8, locked 
together with a wave component of much smaller magnitude in the x-direction. For 
dimensional reasons, the drift velocity associated with this Stokes wave, expressed 
in dimensional form, may be written 

W = KC,€: (5.3) 

in the direction of propagation of the Stokes wave, where K is a dimensionless 
constant. The non-dimensional velocity in the x-direction of the wave component 
propagating in this direction on top of the Stokes wave at angle 8, is therefore 

c = (W cos eo + (91):) (gz)-i 

= 1 + K ( C O S e , ) ~ € : + o ( € ~ ) .  (5.4) 

Equations (5.2) and (5.4) are the same for 8, - E ,  < 1 ,  expressing the locking together 
of the two waves into the doubly periodic wave near the right boundary, provided 
that 

(5 .5)  

This equation shows that the right boundary is asymptotic to a straight line 
through the origin as E ,  tends to zero for doubly periodic waves. The dimensionless 
constant K has the value 0.825 for the straight line to take the measured slope 0.877. 

Analytical reasons have been sought unsuccessfully for the dimensionless constant 
K in (5.3) being 0.825. The Stokes drift velocity for fluid particles a t  mean level Zz, 

w = co ci exp (22,). 
is (Lighthill 1978, p. 280) 

The wave component propagating in the x-direction experiences a weighted average 
of the particle velocities associated with the Stokes wave at levels near zo = 0,  whose 
net effect is to cause the dimensionless constant K to have the value found. 

An example is presented of a doubly periodic wave near the left boundary of the 
region of small wave slope in figure 2. It tests the accuracy there of doubly periodic 
wave solutions of the nonlinear Schrodinger equation, and may be compared with 
the long-crested wave of infinite transverse wavelength calculated by Roberts & 
Peregrine (1983). The parameters for the example are E = 0.1, r = 100 (c = 1.0046, 
go = 0.095, 0, = 0.57'). The solid curves on the left of figure 4 are the central one 
eighth of a transverse wavelength of the upper and lower envelopes (contracted 32 
times). The remaining seven eighths of the transverse wavelength is a wavetrain of 
constant height. The minimum separation of the envelopes a t  the centre is 0.056 of 
the maximum separation. The solid curve on the right of figure 4 is the central one 
eighth of a transverse wavelength of a wave crest (contracted 32 times). The 
remaining seven eighths of the crest is a straight line inclined a t  0.30" to the y-direction. 
The fit between the exact doubly periodic wave properties and the corresponding 
properties of solutions of the nonlinear Schrodinger equation is seen in figure 4 to 
be very good, probably because this example fits well the assumptions made in 
deriving the nonlinear Schrodinger equation. 

The water-surface displacement of the central one eighth of a transverse wavelength 
is sketched in perspective in figure 5. The figure shows good qualitative agreement 
with the perspective drawing of the long-crested wavc of infinite transverse wavelength 
calculated by Roberts & Peregrine (1983, figure 4). Both examples are steady relative 
to  a frame of reference moving in the x-direction. However, their example is standing 
in the transverse direction, while the present example, as can be seen in figure 4, has 
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FIGURE 4. Comparison of properties of the doubly periodic wave with E = 0.1, r = 100 and those 
of the corresponding solution of the NLS equation. On the left is one eighth of a transverse 
wavelength of the upper and lower envelopes (minimum separation 0.056 of maximum separation), 
and on the right is one eighth of a transverse wavelength of the wave crest, all contracted 32 times 
in the transverse direction. The dashed curve, distinguishable only on the lower envelope, is the 
NLS solution. 

FIGURE 5. Perspective view of doubly periodic waves with E = 0.1, r = 100, showing 4 wavelengths 
in the x-direction and one eighth of a wavelength in the y-direction. Vertical magnification 10. 

a small progressive component of velocity in the transverse direction. For this reason, 
a quantitative comparison is not meaningful. 

The water-surface displacement and velocity potential for the present example (2.2) 
each contain 263 wave components in 46 wavebands (0 <j < 45), the wavenumber 
range being - 5  < k < 5. The maximum Fourier coefficients F,,, G,, not included 
in the calculation have magnitude 2 x The maximum magnitude of F and G over 
the 128 x 16 points used in the final calculation is 6.8 x with a root-mean-square 
deviation of F and G from zero of 8 x  (A computer listing of the wave 
components for all examples may be obtained from the author.) 
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6. Large wave slope with large wavelength ratio 
Doubly periodic waves in the upper-left part of the region of occurrence (figure 2) 

are discussed here. The structure of these waves is the same as that of doubly periodic 
waves of small slope, namely two wavetrains locked together. However, because the 
wave slopes are larger, more wave components are generated by the nonlinear 
interactions between the two basic wave components. Attention is restricted here to 
the family of doubly periodic waves for which the two basic wave components are 
(j = 0, k = 1) and ( j  = 1, k = 1) in (2 .2~ ) .  Two examples are presented, the first with 
E = 0.05, r = 4, and the second with E = 0.5, r = 10. 

The doubly periodic wave with parameters e = 0.5, r = 4 ( E ,  = 0.400, 8, = 14.04", 
c = 1.0903) is sketched in perspective in figure 1. The structure at the ends of the 
crests is shown in more detail at the top of the figure, where the minimum wave height 
(trough to  crest) is 0.53 of the maximum wave height of the straight-crested part. 
The doubly periodic wave solution of the nonlinear Schrodinger equation with the 
same parameters as this example was compared with the example, and found to be 
unsatisfactory, as is expected for this large value of E .  The upper envelope F ( y )  and 
the phase @ ( y )  were both in error at the ends of wave crests, and the lower envelope 
- F ( y )  was well in error throughout the transverse wavelength. The water-surface 
displacement and velocity potential (2.2a, b )  each contain 182 wave components in 
14 wavebands (0 <j < 13), the wavenumber range being -6  < k < 18. The 
maximum Fourier components Fmn, G,, not included in the calculation have 
magnitudes 3 x , ~ O - ~ .  The maximum magnitude of F and G over the 64 x 32 points 
used in the final calculation is 6.3 x with a root-mean-square deviation of F and 
G from zero of 1.0 x 

The projections on the (z,z)-plane of the free-surface particle paths a t  points 
initially equally spaced across one transverse wavelength are shown on the left of 
figure 6, and the mean-drift velocity in this direction, calculated from particle paths, 
is drawn on the right of the figure. Each of the fluid particles in the figure lies initially 
at the free surface on a transverse cross-section extending from the centre of a 
straight-crested part to the centre of the next straight-crested part of the wave. The 
mean-drift velocity in the transverse direction is uniform in y .  The interesting 
property is that  the angle of mean drift for the straight-crested part of the wave is 
inclined at only 0.8" to  the x-direction, while the crest itself advances in a direction 
at 10.5" to the x-direction. The particle paths are of a spiral shape with a mean 
direction of advance which is oblique to  the direction of advance of the wave crests 
containing the particles. Particle paths in two-dimensional Stokes waves are 
orthogonal to  wave crests, but this property is not true for the three-dimensional 
situation in which the waves have a doubly periodic structure. 

The second example is of a doubly periodic wave with parameters E = 0.5, r = 10 
( E ,  = 0.396, 8, = 5.71, c = 1.0816) and is sketched in perspective in figure 7 .  The 
straight-crested part of the wave progresses at 3.2" to the x-direction, and the 
minimum wave height (trough to crest) at the ends of the crests is 0.18 of the 
maximum wave height of the straight-crested part. The free-surface particle paths 
were found to  have properties similar to those in the first example. The mean drift 
at the free surface in the straight-crested part of the wave is inclined a t  only 0.1" 
to the x-direction. 
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FIGURE 6. Projections on the vertical (z, 2)-plane of free-surface particle paths across one transverse 
(y) wavelength for the doubly periodic wave with E = 0.5, r = 4, drawn to scale. On the right is 
the drift-velocity profile as a function of the transverse coordinate y calculated from the free-surface 
particle paths. 

FIQURE 7. Perspective view of doubly periodic waves with E = 0.5, r = 10, showing 4 wavelengths 
in the z-direction and 1 wavelength in the y-direction. Vertical magnification 2. 
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7. Large wave slope with small wavelength ratio 
There is a narrow region in figure 2 for values of Bo greater than about 20°, and 

for large wave slopes, in which doubly periodic waves were found to occur. The doubly 
periodic waves tend towards Stokes waves as the lower boundary of the region is 
approached, indicating that within the narrow region the doubly periodic waves are 
close approximations to Stokes waves, differing only in that other wave components 
of much smaller amplitude are locked together with the Stokes wave components. 
McLean et al. (1981) and McLean (1982) have calculated the regions of instability of 
Stokes waves to oblique perturbations, with linearization in the perturbations. The 
instability is associated with resonance in the sense that certain wave components 
lie near the linear dispersion relation. The upper boundary of the narrow region 
calculated here is interpreted as the nonlinear generalization of the stability boundary 
found by the linear stability analysis. 

The Stokes wave components here are those for which j = k in ( 2 . 2 ~ ) .  A non- 
dimensional rectangular coordinate system relative to the Stokes wave is defined by 

1 1 
r r 

x = x + - y ,  Y=--x+y, 

for which ( 2 . 2 ~ )  becomes 

k(X-ct)+- j - k  (X+rY)} 
1 +r2 I k  

Linearization (McLean (1982), equation 5) restricts the Stokes wave perturbations 
to wave components for which 

in (7.2), when the perturbation wavenumbers are 

j - k = + 1  (7.3) 

@, q in McLean’s notation). An example is presented in which a doubly periodic wave 
on the upper boundary of the narrow region is interpreted in terms of the linear 
stability analysis. 

The doubly periodic wave of maximum wave height when r = 0.6 is found to have 
parameters e0 = 0.40, Bo = 59.0°, h/h = 0.126 (in McLean’s notation), and p = 0.74, 
q = 0.44 from (7.4). The instability diagram for a Stokes wave with this value of the 
wave-slope parameter h/A is sketched by McLean (1982, p. 322, figure 2e). The 
instability diagrams for smaller values of h/h  show that Stokes waves are stable to 
a perturbation with these values of p and q. However, at this value of h/h,  the 
perturbation wavenumbers p and q lie just inside the region of class I1 instability. 
Although the dominant off-diagonal wave components of this doubly periodic wave 
are those for which j - k = + 1, the components for which j - k = + 2 are of greater 
magnitude than those for whichj- k = - 1.  The restriction (7.3) is not fully applicable 
therefore, suggesting that this approximate agreement with McLean’s calculations 
is as much as can be expected. 

As the wavelength ratio r is decreased further, equivalent to Bo increasing, certain 
off-diagonal wave components increase relative to other wave components because 
of their nearness to linear resonance. Examination of McLean’s instability diagrams 
shows that class I instabilities contribute at  the lower values of the wave-slope 
parameter applicable here. These doubly periodic waves have not been investigated 
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in detail because of the doubtful physical relevance when their wave crests are 
inclined at large angles to the direction in which the waves have constant shape. It 
is difficult to visualize a natural generating mechanism whose coherence extends over 
such large angles. 

8. Generalizations 
The doubly periodic progressive waves studied here are probably the simplest of 

their kind. They are periodic in two orthogonal directions, and are steady relative 
to a frame of reference moving in one of these directions. In  the course of calculating 
the waves, other solution branches were also found. One branch consists of waves 
dominated by the wave components for which ( j  = 0, k = 1) and (j = 2, k = l), with 
a much smaller ( j  = 1, k = 1) component. These doubly periodic waves have a similar 
appearance to those described in @5 and 6 except that a modulation of twice the 
transverse wavelength is locked in with them. Another branch consists of waves 
dominated by wave components of unequal amplitude for which ( j  = 1, k = 1) and 
(j = 1, k = - 1). These doubly periodic waves are more symmetric in appearance than 
those described here. 

Some calculations have been made on doubly periodic waves which are periodic 
in two non-orthogonal directions. The skewed doubly periodic waves of Saffman & 
Yuen (1980), for which 

[ ( z - c t )  cosa+y sina]+k(z-ct) 
5 k  

were calculated and extended to larger wave slopes than the Zakharov equation 
permits. The method of calculation was a generalization of that described in $2, using 
a space-time grid based on the variables (2-ct) cosa+ y sina, x-ct. A detailed 
comparison with the wave solutions of Saffman & Yuen (1980) could not be made 
because their weakly nonlinear perturbation expansion assumes that the direction 
in which the shape of the doubly periodic wave remains constant coincides with the 
unperturbed Stokes wave direction. Doubly periodic waves near the right boundary 
in figure 2 have constant shape in a frame of reference moving in the 2-direction, while 
the Stokes waves from which they bifurcate move at angles 0, with the x-direction. 
It has not been possible to find, by the present numerical method, fully nonlinear 
doubly periodic waves whose direction of constant shape coincides with the direction 
of the unperturbed Stokes waves from which they bifurcate. 

The occurrence of different forms for doubly periodic waws illustrates the known 
property that the nonlinear dispersion relation for waves in two horizontal directions 
on deep water admits many possibilities for resonance and for locking together of 
wave components. 
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